Southern blot

Southern blot is a method used to check for the presence of a DNA sequence in a DNA sample. The method is named after its inventor, the British biologist Edwin Southern.

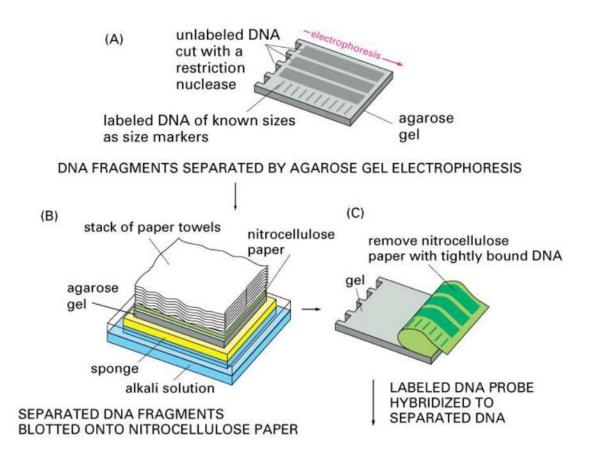
The procedure for Southern blot technique is as detailed below:

• Restriction endonucleases are used to cut high-molecular-weight DNA strands into smaller fragments, which are then electrophoresed on an agarose gel to separate them by size.

• If the DNA fragments are larger than 15 kb, then prior to blotting, the gel may be treated with an acid, such as dilute HCl, which depurinates the DNA fragments, breaking the DNA into smaller pieces, thus allowing more efficient transfer from the gel to membrane.

• If alkaline transfer methods are used, the DNA gel is placed into an alkaline solution (containing NaOH) to denature the double-stranded DNA. The denaturation in an alkaline environment may improve binding of the negatively charged DNA to a positively charged membrane, separating it into single DNA strands for later hybridization to the probe and destroys any residual RNA that may still be present in the DNA.

• A sheet of nitrocellulose (or nylon) membrane is placed on top of (or below, depending on the direction of the transfer) the gel. Pressure is applied evenly to the gel (either using suction, or by placing a stack of paper towels and a weight on top of the membrane and gel), to ensure good and even contact between gel and membrane. Buffer transfer by capillary action from a region of high water potential to a region of low water potential (usually filter paper and paper tissues) is used to move the DNA from the gel on to the


membrane; ion exchange interactions bind the DNA to the membrane due to the negative charge of the DNA and positive charge of the membrane.

• The membrane is then baked in a vacuum or regular oven at 80 °C for 2 hours or exposed to ultraviolet radiation (nylon membrane) to permanently attach the transferred DNA to the membrane.

• The membrane is then exposed to a hybridization probe—a single DNA fragment with a specific sequence whose presence in the target DNA is to be determined. The probe DNA is labelled so that it can be detected, usually by incorporating radioactivity or tagging the molecule with a fluorescent or chromogenic dye.

• After hybridization, excess probe is washed from the membrane and the pattern of hybridization is visualized on X-ray film by autoradiography in the case of a radioactive or

fluorescent probe, or by development of colour on the membrane if a chromogenic detection method is used.

Hybridization of the probe to a specific DNA fragment on the filter membrane indicates that this fragment contains DNA sequence that is complementary to the probe. The transfer step of the DNA from the electrophoresis gel to a membrane permits easy binding of the labeled hybridization probe to the size-fractionated DNA. Southern blots performed with restriction enzyme-digested genomic DNA may be used to determine the number of sequences (e.g., gene copies) in a genome. A probe that hybridizes only to a single DNA segment that has not been cut by the restriction enzyme will produce a single band on a Southern blot, whereas multiple bands will likely be observed when the probe hybridizes to several highly similar sequences (e.g., those that may be the result of sequence duplication). Modification of the hybridization conditions (ie, increasing the hybridization temperature or decreasing salt concentration) may be used to increase specificity and decrease hybridization of the probe to sequences that are less than 100% similar.

Northern blot

The **northern blot** technique is used to study gene expression by detection of RNA (or isolated mRNA) in a sample. With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression levels during differentiation, morphogenesis, as well as abnormal or diseased conditions. This technique was developed in 1977 by James Alwine, David Kemp and George Stark at Stanford University. Northern blotting takes its name from its similarity to the first blotting technique, the Southern blot. The major difference is that RNA, rather than DNA, is analyzed in the northern blot.

Procedure

The blotting procedure starts with extraction of total RNA from a homogenized tissue sample. The mRNA can then be isolated through the use of oligo (dT) cellulose chromatography to maintain only those RNAs with a poly(A) tail. RNA samples are then separated by gel electrophoresis. A nylon membrane with a positive charge is the most effective for use in northern blotting since the negatively charged nucleic acids have a high affinity for them. The transfer buffer used for the blotting usually contains formamide because it lowers the annealing temperature of the probe-RNA interaction preventing RNA degradation by high temperatures. Once the RNA has been transferred to the membrane it is immobilized through covalent linkage to the membrane by UV light or heat. After a probe has been labeled, it is hybridized to the RNA on the membrane. The membrane is washed to ensure that the probe has bound specifically. The hybrid signals are then detected by X-ray film and can be quantified by densitometry.

Applications

Northern blotting allows in observing a particular gene's expression pattern between tissues, organs, developmental stages, environmental stress levels, pathogen infection. The technique has been used to show over expression of oncogenes and down regulation of tumor-suppressor genes in cancerous cells when compared to 'normal' tissue, as well as the gene expression in the rejection of transplanted organs. If an up regulated gene is observed by an abundance of mRNA on the northern blot the sample can then be sequenced to determine if the gene is known to researchers or if it is a novel finding. The expression patterns obtained under given conditions can provide insight into the function of that gene. Since the RNA is first separated by size, if only one probe type is used variance in the level of each band on the membrane can provide insight into the size of the product, suggesting alternative splice products of the same gene or repetitive sequence motifs. The variance in size of a gene product can also indicate deletions or errors in transcript processing, by altering the probe target used along the known sequence it is possible to determine which region of the RNA is missing.

Advantages & disadvantages

Analysis of gene expression can be done by several different methods including RT-PCR, RNase protection assays, microarrays, serial analysis of gene expression (SAGE), as well as northern blotting. Microarrays are quite commonly used and are usually consistent with data obtained from northern blots, however at times northern blotting is able to detect small changes in gene expression that microarrays cannot. The advantage that microarrays have over northern blots is that thousands of genes can be visualized at a time while northern blotting is usually looking at one or a small number of genes. A problem in northern blotting is often sample degradation by

Practical Biotechnology

Dr. Ali Al Deewan

RNases (both endogenous to the sample and through environmental contamination) which can be avoided by proper sterilization of glassware and the use of RNase inhibitors such as DEPC (diethylpyrocarbonate). The chemicals used in most northern blots can be a risk to the researcher, since formaldehyde, radioactive material; ethidium bromide, DEPC, and UV light are all harmful under certain exposures. Compared to RT-PCR northern blotting has a low sensitivity but it also has a high specificity which is important to reduce false positive results. The advantages of using northern blotting include the detection of RNA size, the observation of alternate splice products, the use of probes with partial homology, the quality and quantity of RNA can be measured on the gel prior to blotting, and the membranes can be stored and reprobed for years after blotting

Applications of Blotting and Hybridization Techniques

1. Southern blotting technique is widely used to find specific nucleic acid sequence present in different plant species.

2. Northern blotting technique is widely used to find gene expression and regulation of specific genes.

3. By using blotting technique we can identify infectious agents present in the sample.

4. We can identify inherited disease.

5. It can be applied to mapping restriction sites in single copy gene.